
JOINT-41.4 

CALIBRATION OF POLARIMETRIC RADAR SYSTEMS' 

Lorant A. Muth and Ronald C. Wittmann 
National Institute of Standards and Technology 

Boulder, Colorado 80303 

1. INTRODUCTION 
The calibration of reciprocal radar systems has been studied in [l], where it was shown: (1) 
that full polarimetric calibration of radar systems can remove cross-polarization errors from 
the measurements, and (2) that for reciprocal radars Fourier analysis of polarimetric data 
obtained using a rotating dihedral can reduce noise and background errors in the calibration. 
To calibrate nonreciprocal radar systems [2], we must obtain full polarimetric data from two 
objects whose scattering matrices have independent eigenvectors [3]. Thus, in addition 
to a rotating dihedral, a sphere or a flat plate is needed to solve for the transmitting and 
receiving characteristics of the system [3,4,5]. We find the current methods of solution of the 
calibration equations unattractive for the following reasons: (1) noise and clutter rejection 
is not built into the analysis, and (2) the mathematics seems unnecessarily complicated. In 
addition to mathematical simplification, several ways to verify data integrity are presented, 
so that system problems can be detected early in the calibration phase. 

2. POLARIMETRIC CALIBRATION OF NONRECIPROCAL RADARS 
The measured signal M received from a target is given by 

(1) 
Rhh Rhv d h h  d h u  Thh Thv (E:: 2;:) =' ( & A  & U )  ( A u h  dw ) ( Tvh TU,) ' 

where R and T are the receiving and transmitting characteristics of the radar system, d 
is the scattering matrix of the target, and K is a complex constant containing phase and 
distance information. For nonreciprocal systems no a pr ior i  relationship is assumed among 
the elements of R and T. To solve for the two unknown matrices R and T, we need several 
independent measurements. Let MI and Mz be two such measurements, and d1 and dz 
be the corresponding known calibration target scattering matrices; then we can eliminate 
either T or R from the expression for the received signal. Thus, 

MIM;' = KIX;lRdld,lR-', (2) 

and, similarly, 
MT'M2 = K;'F&T-'d;'dzT. 

We will solve the nonlinear equations (2) in a simple manner. 
The determinants of the above matrices satisfy the relationships 

(3) 

and 

IMI determines IRIITI, and IM1M;'I and IM;'M21 depend only on the calibration tar- 
gets, not on the measurement system. 
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These determinant relationships can be exploited to monitor both data integrity and the 
correctness of the mathematical model of the calibration target scattering matrix. 

3. CALIBRATION USING A DIHEDRAL AND A SPHERE 

Let the scattering matrices of a 90° dihedral and of a sphere be given by 'D(0) and S, where 

and ID(@)/ = -d: independent of 8, and IS1 = sf. Let the measurements using the dihedral 
and the sphere be denoted by ,UD(@) and Ms. In general, the dihedral measurements can 
be be written as 

(9) C,h cos 28 + s,h sin 20 cVu cos 20 + suo sin 20 ' ) Chh COS 28 + Shh Sin 28 Chv COS 28 + Shu sin 26 
M d e )  = ( 

where the Fourier coefficients c and s can be written in terms of the components of R and 
T. (See Appendix A for details.) 
We can attempt to calibrate the system using only dihedral measurements. Thus, 

Mz, (O)Mz,( e)-' = R'D(0)D (e)-' R- ' . 

IMD(O)MD(O)-'I = ID(O)D(8)-'1 = 1. 

(10) 

This equation contains (RI explicitly, and 

(11) 

This determinant condition can again be used to check the model and data integrity of 
scattering measurements using a dihedral. 
The components of MD(O)MD(O)-' can be written in terms of Fourier coefficients E and 
S, which can be obtained in terms of the Fourier coefficients c and s (see Appendix A). For 
convenience we set1 

E Phhrvu - Phvrvh = 1,  (12) 
and obtain the set of equations 

Ordinarily 3 equations and the determinant condition would be enough to determine the 4 
components of R; however, these equations are not independent, since 

( r h h r v h  + p h v p v v ) 2  + (rhhf'vu - rhvruh)' = (& + + (T,"h + r?,)'. (14) 

In fact, IRJ # 1. Once R and T are determined within a normalization factor, we can 
use (4) to determine lRllTl. 
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Therefore, an additional independent equation, which is obtained using a sphere (or a flat 
plate), is needed. We write 

MsMn(B)-' = RS'D(8)-'R-', (15) 

and we define the normalization N ,  a constant independent of 8, 

Here we have good estimates of the right side from physical optics and the experimental 
parameters; the sign is chosen so that the equality holds. 
We can eliminate soldo from the data by computing the expression MsMD(B)-' /N, whose 
determinant is 1 [4]. We can write its components in terms of Fourier coefficients as for the 
dihedral. Thus, 

chh = - f h h P v v  - Phvrvh,  

Shh = -rhhTvh + r h v r w ,  

chv = 2Thh'hv, 

cvu = r h h r v v  + r h v r v h r  

Suv = fhhruh - T h v r w .  

This set of equations can be solved for the components of R , but the lower signal levels 
obtained from the sphere data might degrade the solution. Therefore, we prefer to work 
with as many dihedral equations as possible. w e  choose the expressions for i h h ,  & h ,  s v h  

and /RI = 1 to obtain a set of independent equations. The solutions are 

The condition IRI = 1 allows us to resolve the sign ambiguity in ruv and r u b .  A similar 
procedure yields expressions for T. The details will not be repeated. 
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Appendix A 

THE FOURIER COEFFICIENTS OF DIHEDRAL DATA 

The 8 Fourier coefficients in ,Up(@) can be written in terms of the components of R and T 
by expanding the matrix expression Mo(0)  = XoRD(0)T. We get 

We 
c, s 

These relationships are consistent with IMD(O)MD(O)-'~ = 1 and IMo(@)I/k% = -1, 
which imply the auxiliary relationships 

The structure of these relationships can be understood in terms of the polarization symmetry 
of the dihedral. Again, we can use these relationships to verify data and model integrity. 
Similarly, we can express 2 and i in terms of c and s. 
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